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A SIMPLEX METHOD FOR COUNTABLY INFINITE LINEAR
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Abstract. We introduce a simplex method for general countably infinite linear programs. Previ-
ous literature has focused on special cases, such as infinite network flow problems or Markov decision
processes. A novel aspect of our approach is the placing of data and decision variables in a Hilbert
space that elegantly encodes a ``discounted"" weighting to ensure the continuity of infinite sums.
Under some assumptions, including that all basic feasible solutions are nondegenerate with strictly
positive support and the set of bases is closed in an appropriate topology, we show convergence to
the optimal value for our proposed simplex algorithm. We show that existing applications naturally
fit this more general framework.
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1. Introduction. Infinite-dimensional linear programming plays an important
role in the theory of stochastic, robust, and dynamic optimization [4, 19, 23, 26],
bearing fruit in applications to inventory management [2], revenue management [1],
production planning [18], workforce planning [22], and equipment replacement [5],
among others.

The special case of countably infinite linear programs (CILPs) has received in-
creasing attention [14, 16, 32, 36]. In a CILP, the decision-maker has countably many
decisions and faces countably many linear constraints. Although a comprehensive
theory of duality for CILPs has been proposed in [14], a general theory of simplex
methods for CILPs is still missing. To date, efforts have primarily focused on devising
algorithms for special cases, including nonstationary and countable-state Markov de-
cision processes [19, 26] and networks with countably infinite nodes and arcs [32, 36].
A goal of this paper is to extract analytical insight from these cases in the literature,
discover what they have in common, and connect this to a deeper understanding of
the topological structure of (at least partially) ``tractable"" CILPs.

In addition to tackling as yet intractable problems from the above applications,
a general simplex theory could provide insights into and a foundation for future so-
lution approaches to a larger class of problems where CILPs and their extensions
arise. These include computing the stationary distributions, occupation measures,
and exit distributions of Markov chains [24]; nonstationary stochastic optimization
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including multiarmed bandit problems with time-varying rewards [8]; countably infi-
nite monotropic programs [9, 15] and convex cost flow problems on countably infinite
networks [30]; optimization problems with infinite sums [27]; fluid approximations of
decomposable Markov decision processes [6]; search problems in robotics [13]; infinite
horizon stochastic programs [20]; and games with partial information [11]. Unfortu-
nately, the lack of such a theory has prevented the broader optimization community
from fully utilizing CILPs in their work. This paper attempts to partially overcome
this hurdle.

One reason for the focus thus far on special cases is that infinite-dimensional
linear programming involves complex topological considerations in general. Indeed,
selecting the topological space to embed the data is an important modeling choice [4].
Depending on the topology, it can be more or less easy to state the dual, more or less
easy to prove weak and strong duality, and more or less easy to build the components
of a simplex method. By examining a special case, the choice of dual and the elements
of a simplex algorithm often become easier to identify. To deal with greater generality,
this paper proposes a novel topology for CILPs (inspired by earlier work in [35]) that
frames the problem in a Hilbert space setting.

Before discussing further implications of this modeling choice, we clarify what
we mean by a ``simplex method."" The geometric essence of the simplex method is
the traversing of edges (called ``pivoting"") between extreme points of a polyhedron in
search of an optimal solution. In the finite case, since the objective function is linear
(and hence both convex and concave) and the linear constraints describe a convex
feasible region, the existence of an extreme point optimal solution is guaranteed and
determined by ``local"" considerations---if there are no improving directions along edges
from a given extreme point, then it is a global optimum.

The computational realization of this geometric view of the simplex method in-
volves the algebraic notions of basic feasible solutions, basic directions, and reduced
costs. These are in direct correspondence to the geometric notions of extreme points,
edges, and improving directions, respectively. The success of the simplex method
crucially depends on this tight connection between algebra and geometry.

A core difficulty in designing a simplex method for CILPs, even at the abstract
level, is that both the geometric view and the relationship between algebra and geom-
etry are more tenuous. Indeed, one can easily write down an innocent-looking infinite-
dimensional linear program that is bounded and feasible but has no optimal solution.
Consider, for example, a minimum cost flow problem with two nodes with supply
and demand that are joined by countably many arcs with costs (1/2)k, k = 1, 2, . . ..
The infimum over all feasible costs is zero but is not attained. Even when optimal
solutions are known to exist, the feasible region may have no extreme points (page 61
of [4]). Without extreme points, the geometric essence of the simplex method has no
grounding. Even when extreme points do exist, there are cases where there do not
exist edges on which to ``pivot"" between them. Consider, for example, the feasible
region of the closed unit disk centered around the origin in \BbbR 2 and represented by the
intersection of its countably many supporting half-spaces along the rational points of
its boundary. The boundary of the disk constitutes its extreme points while it has no
edges to pivot along. Indeed, the cone of improving directions from a given extreme
point may lack extreme rays (page 28 of [4]).

Other desirable properties we take for granted in the finite simplex method---
beyond mere clarity about the objects and steps involved---may also fail in the infinite-
dimensional setting. Ideally, a simplex method would satisfy the following:
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(P1) The iterates have monotone nonincreasing objective values.
(P2) The objective values of the iterates converge to the optimal value of the

problem (optimal value convergence).
(P3) Each iteration of the algorithm can be performed in finite time and with a

finite amount of data.
(P4) The iterates converge to an optimal solution of the problem.

Property (P1) is helpful since algorithms are terminated after finitely many iterations
in practice. Property (P1) ensures that the last iterate of the algorithm is always the
best among the sequence of iterates (keeping track of the incumbent iterate, which
is a common practice in nonmonotonic algorithms, is difficult in infinite-dimensional
problems, where calculating objective values already requires infinite time and space).

It is well documented (see, for instance, [16]) that properties (P1)--(P4) need not
hold in general. Designing algorithms that meet some or all of these properties for
special cases have been the focus of a stream of papers in recent years [19, 26, 32, 36].

In this paper, we provide a set of sufficient conditions (captured as assumptions
(A1)--(A8)) that ensure our proposed simplex method satisfies (P1) and (P2) for a
broad class of problems. This is the main result of the paper, captured as Theorem 8.3.
The result is nontrivial, and the set of sufficient conditions critically depend on the
problem's embedding in the Hilbert space discussed above. The closest result in the
literature is the ``shadow simplex method"" in [16]. There, an algorithm is provided
that satisfies (P2) and (P3) under a set of conditions that does not guarantee (P1).
It is a simplex method in the sense that it pivots among extreme points of finite-
dimensional projections (or ``shadows"") of the feasible region (that may not correspond
to adjacent pivots on the original feasible region). A general approach to resolving
(P3) is beyond the scope of this paper; however, the examples we discuss in section 9
do have a finite implementation. As for (P4), our main result on optimal value
convergence (Theorem 8.3) establishes the existence of a subsequence of iterates that
converges to an optimal solution. To establish convergence of the entire sequence of
iterates involves careful selection arguments in the spirit of [34], which is not the focus
of the current paper. However, we do show in Theorem 8.4 that the set of iterates of
the simplex method become arbitrarily close to the set of optimal solutions and, by
implication, if there is a unique optimal solution, (P4) holds.

The reader may notice that we have not included among our desiderata (P1)--
(P4) a statement about the rate of convergence of the simplex algorithm in question.
Although in finite-dimensional optimization this type of analysis is commonplace, in
the infinite-dimensional setting we know of only a few cases where convergence rates
have been posited (for instance, [29, 33]). These papers leverage compactness and
continuity properties of continuous linear programs that fail to hold in our setting.

The dearth of convergence rate results in the literature is not a surprise. The
finite-dimensional simplex algorithm itself, arguably the most impactful optimization
algorithm ever developed, evaded complexity analysis for decades and remains an open
area of research until the present day. Klee and Minty showed worst-case performance
can be exponential, and recent results show that this worst-case performance holds
under numerous pivot rules. Indeed, a celebrated result is a recent subexponential
(although not polynomial) worst case for a particularly successful pivot rule [21].

We organize the remainder of the paper as follows. We start in section 2 with
a few preliminaries and provide an overview of the Hilbert space structure leveraged
throughout the paper. In section 3, we state our general CILP problem. In section 4,
we define the concept of a basic feasible solution and show that the extreme points
are basic feasible solutions. Section 5 describes the mechanics of pivoting between
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extreme points. In section 6, we introduce the concept of reduced costs to provide an
optimality condition analogous to the finite-dimensional simplex method. In section 7,
we construct our simplex method based on choosing pivots of ``steepest descent,"" i.e.,
reduce the objective value by the greatest possible rate. This guarantees property
(P1) but also proves crucial in establishing (P2). In section 8, we show that this
simplex method converges to optimal value. Section 9 provides a concrete example
that satisfies our assumptions.

2. Preliminaries. This section contains basic notation and definitions. Most
importantly, it defines a type of topology on the space of real sequences that is used
throughout the rest of the paper.

Let \BbbR and \BbbN denote the set of real and natural numbers, respectively. The vector
space of all real sequences is denoted \BbbR \BbbN . We denote an element x of \BbbR \BbbN by (xj)

\infty 
j=1

(or more simply (xj)), where xj is called the jth component of x. The vector space
ordering on \BbbR \BbbN is denoted \geq , where x \geq 0 if xi \geq 0 for i = 1, 2, . . . . A matrix
A = (aij)

\infty 
i,j=1 (or more simply A = (aij)), where aij is a real number for all i and

j, is called a doubly infinite matrix. The jth column of A is denoted a\cdot j , and the ith
row is denoted ai\cdot . The columns and rows of A can be viewed as sequences in \BbbR \BbbN . We
let Ax denote the vector (

\sum \infty 
j=1 aijxj : i = 1, 2, . . . ). Let u and v be two sequences in

\BbbR \BbbN . For brevity, we sometimes let u\top v denote the infinite sum
\sum \infty 

j=1 ujvj .

For any countable set B of vectors in \BbbR \BbbN , let cspan(B) denote their countable span;
that is, for B = \{ B1, B2, . . . \} let cspan(B) = \{ 

\sum \infty 
j=1 \alpha jB

j : \alpha \in \BbbR \BbbN , where
\sum \infty 

j=1

\alpha jB
j converges\} , where

\sum \infty 
j=1 \alpha jB

j = limN\rightarrow \infty 
\sum N

j=1 \alpha jB
j denotes the component-

wise convergence of partial sums.1 We abuse notation and let A denote both a doubly
infinite matrix as well as the set of columns in A. This notation will save a lot of
tedious distinctions throughout the paper. Accordingly, we may write cspan(A) as
the countable span of the set of columns of A (recall each column is a vector in \BbbR \BbbN ).

For any x \in \BbbR \BbbN , the support set \scrS (x) of x is the set of indices j, where xj is
nonzero; that is, \scrS (x) := \{ j : xj \not = 0\} . Let \scrS c(x) denote the complement of the
support set of x; that is, \scrS c(x) := \{ j : xj = 0\} . Let F be a subset of \BbbR \BbbN . A vector
x \in F is an extreme point of F if it cannot be expressed as x = \lambda x1 + (1  - \lambda )x2,
where \lambda \in (0, 1) and x1, x2 \in F with x1 \not = x2. The set of all extreme points of F is
denoted extF .

We define a particular class of Hilbert topologies on the space of real sequences.
Earlier work using a similar topology can be found in [35]. Define \BbbR \infty =

\prod \infty 
j=1 Hj ,

whereHj = \BbbR (as a set but with a different topology defined below) for all j = 1, 2, . . . .
The standard inner product and norm on \BbbR are denoted \langle \cdot , \cdot \rangle and | \cdot | , respectively.
That is, for x, y \in \BbbR , \langle x, y\rangle = xy, and | x| is the absolute value of x. We endow
each Hj with a slightly modified topology. Fix a \delta j \in (0, 1), and define the inner
product and norm on Hj as \langle \cdot , \cdot \rangle j = \delta 2j \langle \cdot , \cdot \rangle and | \cdot | j = \delta j | \cdot | . That is, if x, y \in Hj ,

then \langle x, y\rangle j = \delta 2jxy and | x| j = \delta j | xj | . Under these operations, it is straightforward
to show that Hj is a Hilbert space with an appropriately defined norm topology
associated with | \cdot | j , which agrees with the usual Euclidean topology on \BbbR .

The Hilbert sum H = \{ (xj) \in 
\prod \infty 

j=1 Hj :
\sum \infty 

j=1 | xj | 2j =
\sum \infty 

j=1 \delta 
2
j | xj | 2 <\infty \} of the

spaces Hj is endowed with inner product (x| y) =
\sum \infty 

j=1 | xjyj | j =
\sum \infty 

j=1 \delta 
2
j \langle xj , yj\rangle and

norm

1When B is a finite set of vectors, the sums defining cspan(B) are finite.
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| | x| | =

\left(  \infty \sum 
j=1

| xj | 2j

\right)  1/2

=

\left(  \infty \sum 
j=1

\delta 2j | xj | 2
\right)  1/2

(2.1)

and is a Hilbert space (see section I.6 in [10]). Using this notation, another way to
define H is the set of sequences in

\prod \infty 
j=1 Hj with finite | | \cdot | | norm. Note that every

choice of the sequence (\delta j) may give rise to a different Hilbert space H.
For every index j, define a compact set Vj \subseteq Hj , where | vj | \leq rj for every

vj \in Vj . Let V =
\prod \infty 

j=1 Vj . By Tychonoff's theorem, V is compact in the product
norm topology on H consisting of the product of the norm topologies associated with
| \cdot | j for every j, no matter the choice of (\delta j). However, we would like to describe
when V is compact in the norm topology (of | | \cdot | | ) on H. This is achieved only under
certain conditions, as stated in the following lemma.

Lemma 2.1. Let Vj \subseteq Hj, where | vj | \leq rj for every vj \in Vj for some sequence
(rj) and V =

\prod \infty 
j=1 Vj. If the sequence (\delta j) is such that

\sum \infty 
j=1 \delta 

2
j r

2
j < \infty , then the

norm topology (of | | \cdot | | ) and the product norm topology on V are equivalent.

Proof. See pages 120 and 153 of [25].

Along with this characterization of compactness of V in the norm topology, it is
critical to understand the notion of continuity of linear functionals in the same topol-
ogy. By the Riesz--Fr\'echet theorem, continuous linear functionals over H are precisely
of the form \varphi (x) = (z| x) for x \in H, where z is another element of H. Consider the
linear function \varphi (x) =

\sum \infty 
j=1 ajxj , where (aj) is an arbitrary real sequence (not nec-

essarily in H). The function \varphi is well defined and continuous in the norm topology
if there exists a sequence (\~aj) \in H such that

\sum \infty 
j=1 ajxj = (\~a| x) =

\sum \infty 
j=1 \delta 

2
j \~ajxj for

all x \in H. The above equation holds if \~aj = aj/\delta 
2
j , where | | \~a| | 2 =

\sum \infty 
j=1 \delta 

2
j

\bigm| \bigm| aj/\delta 2j \bigm| \bigm| 2 =\sum \infty 
j=1 | aj | 2/\delta 2j <\infty . We summarize this in the following lemma.

Lemma 2.2 (continuity of linear functionals). Given a real sequence (aj), the
linear functional \varphi (x) =

\sum 
j=1 ajxj over x \in H is continuous in the norm topology if\sum \infty 

j=1 | aj | 2/\delta 2j <\infty .

A sufficient condition for Lemma 2.2 is that there exist a \rho \in (0, 1), scalar \=a <\infty ,
and real sequence (\alpha j) such that | aj | \leq \=a\alpha j and 0 < \alpha j < \delta j with 0 < \alpha 2

j/\delta 
2
j < \rho j for

all j. Indeed, in this case

\infty \sum 
j=1

1
\delta 2j
| aj | 2 \leq 

\infty \sum 
j=1

1
\delta 2j
\=a2\alpha 2

j = \=a2
\infty \sum 
j=1

\alpha 2
j

\delta 2j
< \=a2

\infty \sum 
j=1

\rho j = \=a2 \rho 
1 - \rho <\infty .

A particular choice that achieves this is to set \delta j to \delta j for some \delta \in (0, 1) and \alpha j to
\alpha j for some \alpha \in (0, 1), where \alpha /\delta < \rho for some \rho \in (0, 1).

3. CILPs. The problem under study in this paper is the CILP:

f\ast := inf
x\in \BbbR \BbbN 

\infty \sum 
j=1

cjxj ,(P.1)

(P) subject to

\infty \sum 
j=1

aijxj = bi for i = 1, 2, . . . ,(P.2)

x \geq 0,(P.3)

where cj , aij , and bi are real numbers for all i, j = 1, 2, . . . . Let c denote the sequence
(cj), b denote the sequence (bi), and A denote the doubly infinite matrix (aij).
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The first task is to set conditions on the data so that an optimal extreme point so-
lution of (P) is guaranteed to exist. The literature has imposed a variety of conditions
on (P) to ensure an extreme point optimal solution exists (see [16] for a discussion).
Our approach is different and leverages the Hilbert topology defined in section 2.
First, we assume the following:

(A1) The set \scrF of all feasible solutions to (P) is nonempty
(A2) There exists a nonnegative sequence r = (rj) \in \BbbR \BbbN such that | xj | \leq rj for

every sequence x = (xj) \in \scrF . We also assume that there is a 0 < \delta < 1
such that

\sum \infty 
j=1 \delta 

jrj <\infty .
(A3) There exists an \alpha \in (0, \delta ) and an \=a <\infty such that

(i) | aij | \leq \=a\alpha j for all i, j = 1, 2, . . . and
(ii) | aij | \leq \=a\alpha i for all i, j = 1, 2, . . . .

Let Xj = [0, rj ], and set X =
\prod \infty 

j=1 Xj . Define the Hilbert space H with norm | | \cdot | | H
as defined in (2.1) with \delta j = \delta j , where \delta is defined in (A2). By Lemma 2.1 and
Tychonoff's theorem, X is compact in the norm topology on H. It remains to discuss
the continuity properties of the linear functions defining (P). A preliminary result is
as follows.

Lemma 3.1. Suppose (A2) and (A3) hold. The infinite series
\sum \infty 

j=1 aijxj is ab-
solutely convergent for i = 1, 2, . . . and all x \in H if \alpha < \delta .

Proof. For all i, j = 1, 2, . . . , we have the basic property that | aijxj | \leq | aij | | xj | .
This means that

\infty \sum 
j=1

| aijxj | \leq 
\infty \sum 
j=1

| aij | | xj | =
\infty \sum 
j=1

\delta 2j
\Bigl( 

| aij | 
\delta 2j

\Bigr) 
| xj | 

= ((| aij | /\delta 2j) | (| xj | )) \leq | | (| aij | /\delta 2j)| | H | | (xj)| | H ,

where the second equality follows by multiplying and dividing term j in the sum by \delta 2j ,
the third equality observes that this is the inner product of the vectors (| aij | /\delta 2j) and
(xj) in the Hilbert space H, and the final inequality is the Cauchy--Schwarz inequality.
It thus remains to show that | | (| aij | /\delta 2j)| | H | | (xj)| | H < \infty . We have assumed that
x \in H, and so | | (xj)| | H < \infty ; so it remains to show that | | (| aij | /\delta 2j)| | H < \infty .
Observe that

| | (| aij | /\delta 2j)| | H =

\sqrt{}    \infty \sum 
j=1

\delta 2j (| aij | /\delta 2j)2 =

\sqrt{}    \infty \sum 
j=1

| aij | 2/\delta 2j

\leq 

\sqrt{}    \infty \sum 
j=1

\=a2\alpha 2j/\delta 2j = \=a\alpha /\delta \surd 
1 - (\alpha /\delta )2

<\infty ,

where the first inequality follows from (A3) and the second (strict) inequality follows
under the assumption that \alpha < \delta .

The last of our basic assumptions on the data ensures that the objective function
is continuous in the same topology:

(A4) The sequence (cj) is such that
\sum \infty 

j=1 | cj | 2/\delta 2j <\infty .

Theorem 3.2 (existence of optimal extreme point). If (A1)--(A4) hold, then (P)
has an optimal extreme point solution.
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Proof. This follows from the Bauer maximum principle (Theorem 7.69 in [3]) in
the Hilbert norm topology. First, (A1) tells us the feasible region \scrF is nonempty. As
argued above, the set X =

\prod \infty 
j=1 Xj =

\prod \infty 
j=1[0, rj ] is compact using (A2). Thus, it

suffices to show that the sets \{ x \in H :
\sum \infty 

j=1 aijxj = bi\} are closed for i = 1, 2, . . .
since then \scrF is the intersection of X and these sets. The closedness of \{ x \in H :\sum \infty 

j=1 aijxj = bi\} follows if
\sum \infty 

j=1 aijxj is a continuous function. It is straightforward

to see (A3)(i) implies that
\sum \infty 

j=1 | aij | 2/\delta 2j < \infty holds, and so, by Lemma 2.2, the
constraint functions in (P.2) are continuous. Hence, \scrF is compact in the Hilbert
norm topology. It is left to show that the objective function of (P) is well defined,
concave, and continuous. Concavity follows from linearity, while well-definedness and
continuity follow by (A4) and Lemma 2.2.

Later, we will need to leverage structure on the range of the doubly infinite matrix
A, that is, the space containing b. For now, we will assume that range space is another
Hilbert space Y in \BbbR \BbbN defined by a norm as in section 2 but now taking \delta j = \beta j for
some \beta \in (0, 1). That is, for y \in Y we have | | y| | 2Y =

\sum \infty 
i=1 \beta 

2iy2i . The next result
shows when the linear map defined by A maps feasible solutions into Y .

Lemma 3.3. Suppose (A2) and (A3) hold. Then cspan(A) is a subspace of Y if
0 < \beta < 1 and 0 < \alpha < \delta < 1.

Proof. Let x \in H, and set y = Ax \in \BbbR \BbbN by Lemma 3.1. This means yi =\sum \infty 
j=1 aijxj and | yi| \leq 

\sum \infty 
j=1 | aijxj | \leq \=a(\alpha /\delta )/

\sqrt{} 
1 - (\alpha /\delta )2| | x| | H from the proof of

Lemma 3.1. This then implies

| | y| | Y =

\sqrt{}    \infty \sum 
i=1

\beta 2i| yi| 2 \leq 

\sqrt{}    \infty \sum 
i=1

\beta 2i\=a2 (\alpha /\delta )2

(1 - (\alpha /\delta )2)2 | | x| | 
2
H(3.1)

= \=a \alpha /\delta 
1 - (\alpha /\delta )2 | | x| | H

\sqrt{}    \infty \sum 
i=1

\beta 2i = \=a \alpha /\delta 
1 - (\alpha /\delta )2 | | x| | H

\beta \surd 
1 - \beta 2

<\infty (3.2)

for 0 < \beta < 1 since | | x| | H <\infty for all x \in H. This implies y \in Y .

We now show that A defines a continuous linear operator. Recall (see, for in-
stance, Chapter IV of [37]) that the operator norm | | L| | of linear operator L is equal
to supx:| | x| | H\leq 1 | | L(x)| | Y . We say the linear map L is continuous (or equivalently
bounded) if | | L| | < \infty . This result is critical for establishing convergence of the
simplex algorithm we define below. The proof involves establishing an isometric iso-
morphism between H and \ell 2 and using the Schur test for boundedness of operators
mapping \ell 2 into \ell 2 (see page 260 of [12]). Due to its technical nature, we place the
proof in the appendix.

Lemma 3.4 (continuity of constraint operator). Suppose (A2) and (A3) hold.
The doubly infinite matrix A defines a continuous linear operator from H into Y if
0 < \beta < 1 and 0 < \alpha < \delta < 1.

4. Extreme points and basic feasible solutions. As with finite-dimensional
versions of the simplex method, our algorithm works with the algebraic characteri-
zation of extreme points as basic feasible solutions. Defining basic solutions is more
delicate in the infinite-dimensional setting than in the finite setting (for an extended
discussion, see [4]). We make the following preliminary definitions.

Definition 4.1. We call B(x) \triangleq \{ a\cdot j : j \in \scrS (x)\} the active set of columns of A
associated with a feasible x.
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The name ``active set"" comes from the fact that Ax is a linear combination of the
columns in B(x). That is, only the columns in B(x) are ``active"" in the product Ax.
Informally, we may think of B(x) as the ``support of columns of A"" associated with
x, whereas \scrS (x) is the ``support of indices"" of x.

Definition 4.2. A subset B of columns of A is a basis if

(B1) \{ z : Az = 0, B(z) \subseteq B\} = \{ 0\} .
(B2) cspan(B) = cspan(A).

We say B is a basis of feasible solution x if, additionally,

(B3) B(x) \subseteq B.

This condition is analogous to the familiar definition of a basis of an extreme point
solution from finite-dimensional linear programming (see, for instance, Chapter 3 in
[7]). Conditions (B1) and (B2) correspond to the fact that a basis forms a column
basis of the constraint matrix, with (B1) yielding linear independence and (B2) a
spanning condition. Condition (B3) captures the fact that nonbasic variables are set
to zero. Strict containment in (B3) allows the possibility of basic variables taking a
value of zero.

If B is a basis of A, then it determines a linear operator from HB into Y where
HB = \{ x \in H | xj = 0 for j /\in \scrS (B)\} with \scrS (B) denoting the set of indices of columns
of A that are in B. We abuse notation and also let B denote this linear operator. We
need another assumption on the structure of the constraint matrix A that yields the
invertibility of our basis matrices:

(A5) The doubly infinite matrix A and scalar \beta are such that A : H \rightarrow Y is
an onto map. That is, cspanA = Y .

Lemma 4.3 (continuity of bases in operator norm). Suppose (A2), (A3), and
(A5) hold, 0 < \beta < 1, and 0 < \alpha < \delta < 1. Let B be a basis of A. Then, the doubly
infinite matrix B defines a continuous linear operator with an inverse B - 1 that is
also a continuous linear operator.

Proof. The proof that B defines a continuous linear operator is nearly identical
to that of Lemma 3.4 since B is a submatrix of A. See the appendix. The fact that
B - 1 exists comes from the definition of a basis. Indeed, property (B1) implies that
B is one-to-one. Let w1 and w2 be such that Bw1 = Bw2. Note that w1 and w2

can be extended (by appending zeros) to vectors z1 and z2 such that Az1 = Az2,
where B(zi) \subseteq B for i = 1, 2. Thus, according to (B1), A(z1 - z2) = 0, which implies
z1 - z2 = 0 so z1 = z2. This, in turn, implies w1 = w2 and B is a one-to-one mapping.
The fact that B is onto follows from (B2) and (A5). Finally, by the Banach inverse
theorem (see Theorem 1 on page 149 of [28]), B - 1 is a continuous map from Y to H.

Definition 4.4. A vector x \in H is a basic solution if it admits a basis B (as
defined in (B1)--(B3)). If a basic solution is feasible it is called a basic feasible solution
(bfs). If B(x) is a basis of x, then x is called a nondegenerate bfs.

Given a basis B, one can construct an associated bfs. Recall that B is a subset of
columns in A. Let xB denote the elements of x that correspond to the columns in B;
we call the elements of xB basic variables. Let N denote the columns in A that are
not in B. The elements in xN are called nonbasic variables. Then, the basic solution
associated with B satisfies BxB = b and xN = 0. Since B is invertible, we know
xB = B - 1b. The solution (xB , xN ) is a bfs if and only if B - 1b \geq 0. We summarize
this in the following result.
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Lemma 4.5. If B is a basis, then the solution x = (xB , xN ), with xB = B - 1b and
xN = 0, is a basic solution.

Observe that if x is a nondegenerate bfs, then B(x) is its unique basis. In general,
there is not a one-to-one correspondence between bfs's and extreme points (for a
thorough discussion, see [4], and in the specific context of CILPs, see [17]). The
following concepts help to resolve this challenge.

Definition 4.6. For any nonnegative x \in H, let \sigma (x) denote the infimal positive
value of a component of x; that is, \sigma (x) \triangleq infj\in \scrS (x) xj. We say that x has strictly
positive support (SPS) if \sigma (x) > 0.

The concept of SPS first appeared in [31] and was later generalized to CILPs in
[17]. Observe that a real sequence x can have all positive entries and yet fail to have
SPS. Indeed, consider the vector (xj), where xj = 1/j for j = 1, 2, . . . . The following
two assumptions align the algebraic and geometric notions of extreme points, and as
we shall see in Remark 5.7 below, also insure that pivots move from an extreme point
to a different extreme point:

(A6) Every bfs of (P) is a nondegenerate bfs.
(A7) \sigma \triangleq infx\in extF \sigma (x) > 0. In particular, every extreme point of \scrF has

SPS.
In section 9, we will see an example of a problem where these conditions hold. It is
also straightforward to see that they do not hold in general. Failure of (A6) is common
even in finite-dimensional linear programming. As for assumption (A7), the binary
tree in Figure 1 of [16] provides an example with a bfs that fails the SPS condition.

Theorem 4.7 (extreme points are bfs's). Suppose (A6), (A7), and the conditions
of Theorem 3.2 hold. Then a feasible solution is an extreme point if and only if it is
a nondegenerate bfs. In particular, problem (P) has an optimal nondegenerate bfs.

Proof. The ``if and only if"" follows from Proposition 2.6 and Corollary 2.12 in
[17]. The ``in particular"" is then immediate from Theorem 3.2.

5. Pivoting. The key step in any simplex method is pivoting---moving system-
atically from one bfs to another in a way that monotonically improves the objective
value of the optimization problem.

Before exploring pivoting in the infinite-dimensional setting, we refresh the me-
chanics of a pivot in the finite-dimensional setting at a high level. This may help
the reader visualize some of our development. We describe the finite setting only for
the most well-behaved case, where the problem is bounded and the bfs's involved are
nondegenerate.

Pivoting involves selecting an appropriate nonbasic variable (called an entering
variable) to add to B and selecting an appropriate basic variable (called a leaving
variable) to remove from B. This results in a new basis of vectors B\prime that can be
associated with a new bfs x\prime . In general, there is some choice over both the entering
and leaving variables.

Geometrically, a pivot entails a movement from one extreme point of the feasible
region to another along an edge. When an entering variable is chosen, it determines
which edge is traversed by defining a basic direction d that takes a value of 1 on the
component of the entering variable, zero on all other nonbasic variables, and otherwise
satisfies the constraint Ax = b to determine the values of d on the components of the
basic variables. The new bfs x\prime equals the sum x + \lambda d for some \lambda \geq 0. The value
of \lambda is increased as the basic direction is traversed until the value of one of the basic
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variables hits zero (this is unique by nondegeneracy). The basic variable whose value
first hits zero in x\prime = x+ \lambda d is the leaving variable.

Finally, which nonbasic variable to choose as an entering variable depends on
its reduced cost. The reduced cost of a nonbasic variable is the change in objective
value associated with its basic direction d; that is,

\sum 
j cjdj , where c is the objective

vector of the linear program. Thus, an entering variable must be chosen among those
nonbasic variables where

\sum 
j cjdj improves the value of the objective. In the case

of a minimization problem, this is precisely when
\sum 

j cjdj < 0. A key result in the
finite-dimensional setting is that a bfs is optimal if it has no nonbasic variables with
an improving reduced cost (Theorem 3.1 in [7]). This is the termination condition of
the finite-dimensional simplex method.

We turn now to detail the infinite-dimensional setting. We highlight important
differences with the finite-dimensional case as we proceed. We assume (A1)--(A7)
throughout this discussion. By Theorem 3.2, a feasible extreme point solution x
exists. By Theorem 4.7, x is a nondegenerate bfs.

Definition 5.1. Let x be a nondegenerate bfs and k \in \scrS c(x) be the index of a
nonbasic variable. The kth basic direction d(x; k) with respect to x (or simply kth
basic direction when the context is clear) is the unique vector d \in H such that

(BD1) dk = 1,
(BD2) dj = 0 for all j \in \scrS c(x) not equal to k,
(BD3) Ad = 0.

It is important to note that the basic direction depends on the current basis. This
is captured directly in the notation d(x; k).

The above definition asserts that there is a unique vector in H that satisfies
(BD1)--(BD3). To see this, for (BD3) to hold, we must have for every constraint
i = 1, 2, . . . ,

\infty \sum 
j=1

aijdj =
\sum 

j\in \scrS (x)

aijdj +
\sum 

j\in \scrS c(x)

aijdj =
\sum 

j\in \scrS (x)

aijdj + aikdk +
\sum 

k \not =j\in \scrS c(x)

aijdj = 0

(5.1)

using dk = 1 by (BD1). This is equivalent to\sum 
j\in \scrS (x)

aijdj =  - aik for i = 1, 2, . . .(5.2)

since dj = 0 for all j \in \scrS c(x) not equal to k by (BD2). Our attention turns to
analyzing (5.2).

Now, given a bfs, the set B(x) is a basis. As shown in Lemma 4.3, this implies
that B(x) is an invertible linear operator with inverse B(x) - 1. We may write d(x; k)
into two components (dB(x), dN(x)), where N(x) consists of the columns of A not in
B(x). Then (5.2) is equivalent to writing B(x)dB(x) =  - a\cdot k, where a\cdot k is the kth
column of A: dB(x) =  - B(x) - 1a\cdot k. Also, (BD1) implies dk = 1 and dj = 0 for

j \in Sc(x) \setminus \{ k\} . That is, dN(x) = ek, where ek is the vector with a one in entry k and
zero otherwise on N(x). Putting this together we have

d(x; k) = ( - B(x) - 1a\cdot k, ek).(5.3)

The existence and uniqueness of d is thus a consequence of the properties of the matrix
B and its inverse.
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Condition (BD3) ensures that x+ \lambda d(x; k) satisfies constraint (P.2) for all \lambda \in \BbbR 
since A(x+\lambda d(x; k)) = Ax+\lambda Ad(x; k) = b+0 = b, where Ax = b since x is a feasible
solution of (P). We next characterize the set of \lambda such that x + \lambda d(x; k) \geq 0; that
is, (P.3) holds. If every component dj(x; k) of d(x; k) is nonnegative, then \lambda can be
taken arbitrarily large and (P.3) continues to hold. The next result shows that, under
our assumptions, this cannot happen.

Lemma 5.2. Suppose (A2) holds. Let x be a nondegenerate bfs and k be the index
of a nonbasic variable at x. The set \{ j \in \scrS (x) : dj(x; k) < 0\} is nonempty.

Proof. Suppose not. Then, dj(x; k) \geq 0 for all j \in \scrS (x). Also recall that
dk(x; k) = 1 and dj(x; k) = 0 for all j \in \scrS c(x) not equal to k. This implies that
x + \lambda d(x; k) \geq 0 and, in particular, x + \lambda d(x; k) \in \scrF for all \lambda \geq 0 since both (P.2)
and (P.3) are satisfied. This violates the boundedness assumption (A2).

Given this lemma, we may look for the leaving variable associated with the basic
direction k. Informally, the leaving variable is the basic variable that first reaches a
value of zero along the basic direction. We need a few lemmas to make this precise.

The object of interest here is the infimum ratio

\lambda (x; k) \triangleq inf
\Bigl\{ 

xj

 - dj(x;k)
: j \in \scrS (x) such that dj(x; k) < 0

\Bigr\} 
.(5.4)

Below (in Theorem 5.6) we show \lambda is well defined and that there always exists a
unique j that attains the infimum in (5.4).

Next, we show that \lambda (x; k) behaves as expected in the sense that it defines how
far the feasible region extends in the basic direction d(x; k).

Lemma 5.3. Let x be a nondegenerate bfs and k be the index of a nonbasic vari-
able. Then x + \lambda d(x; k) \geq 0 for all \lambda \in [0, \lambda (x; k)]. Moreover, x + \lambda d(x; k) \ngeq 0 for
\lambda /\in [0, \lambda (x; k)].

Proof. For the first part, consider any 0 \leq \lambda \leq \lambda (x; k). We only need to consider
j \in \scrS (x) for which dj(x; k) < 0 (because dj(x; k) \geq 0 for all other j and hence
xj + \lambda dj(x; k) \geq 0 for those j). For any such j, we have xj + \lambda dj(x; k) \geq xj +
\lambda (x; k)dj(x; k) \geq xj +

xj

 - dj(x;k)
dj(x; k) = 0 as claimed.

For the second part, first consider any \lambda > \lambda (x; k). We need to show that there is
a j \in \scrS (x) such that xj + \lambda dj(x; k) < 0. Any such j must be such that dj(x; k) < 0.
There are two possibilities. The first one is that the infimum ratio is attained for some
j, say j\ast . Then, xj\ast +\lambda dj\ast (x; k) < xj\ast +\lambda (x; k)dj\ast (x; k) = xj\ast +

xj\ast 

 - dj\ast (x;k)
dj\ast (x; k) = 0.

The second one is that the infimum ratio is not attained. Suppose \lambda = \lambda (x; k) + \epsilon for
some \epsilon > 0. Now, by definition of the infimum, there exists a j\ast such that

xj\ast 

 - dj\ast (x;k)
<

\lambda (x; k)+\epsilon , and for this j\ast , we have, xj\ast +\lambda dj\ast (x; k) = xj\ast +(\lambda (x; k)+\epsilon )dj\ast (x; k) < 0.
Finally, if \lambda < 0, then xk + \lambda dk(x; k) = 0 + \lambda < 0.

It remains to define the leaving variable. Any xj such that j achieves the infimum
in the definition of \lambda (x; k) in (5.4) is a candidate (by nondegeneracy there exists at
most one such index). However, it is not clear whether or not this infimum is attained.
Indeed, in the CILP setting, a leaving variable may not exist in general.

Under our assumptions, however, we show that a leaving variable always exists in
every basic direction. Our proof of this requires geometric reasoning. We first show
that x\prime \triangleq x + \lambda d(x; k) from the previous lemma is an extreme point (see Proposi-
tion 5.5). In the process, we show that each basic direction goes along an ``edge"" of
the feasible region (a precise definition of ``edge"" is given). This conforms with our
intuition from the finite-dimensional setting that pivots occur along edge directions.
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Having established x\prime is an extreme point, we will use Theorem 4.7 to conclude
that x\prime is a nondegenerate bfs. This algebraic property of x\prime rules out the possibility
that the infimum in (5.4) is not attained. Details of this argument are in Theorem 5.6.

We start with a formal definition of extremality that captures the notion of ex-
treme points as a special case. For (P.3) and an extended discussion of extremality
in general infinite-dimensional vector spaces, see section 7.12 in [3].

Definition 5.4 (extreme subset). Let S be a nonempty subset of \BbbR \BbbN . A non-
empty subset E \subset S is called S-extreme if it has the following property: if x, y \in S
and if there exists a t, 0 < t < 1 such that tx + (1  - t)y \in E, then x, y necessarily
belong to E. A 0-dimensional extreme subset is a called an extreme point of S. A
1-dimensional extreme subset of is called an edge of S.

Proposition 5.5. Suppose (A1)--(A7) hold, x is a nondegenerate bfs, and k is
the index of a nonbasic variable. Then,

(i) the set \scrZ (x; k) \triangleq \{ z \in H : z = x+ \lambda d(x; k), \lambda \in [0, \lambda (x; k)]\} is an edge
of \scrF , and

(ii) x+ \lambda (x; k)d(x; k) is an extreme point of \scrF .
Proof. See appendix.

Theorem 5.6 (existence and uniqueness of the leaving variable). Suppose the
condition of Theorem 4.7 holds, and let x be a nondegenerate bfs and k be the index of
a nonbasic variable. There exists a unique leaving basic variable; that is, there exists
a unique j\ast \in \scrS (x) with dj(x; k) < 0 that attains the infimum ratio in (5.4). Thus,

x\prime \triangleq x+\lambda (x; k)d(x; k) is a nondegenerate bfs with basis B(x\prime ) = B(x)\cup \{ a\cdot k\} \setminus \{ a\cdot j\ast \} .
Proof. By Proposition 5.5, x\prime is an extreme point of \scrF , and thus by Theorem 4.7,

x\prime is a nondegenerate bfs. Suppose by way of the contradiction that there is no leaving
basic variable when pivoting in the nonbasic variable xk to form x\prime . We will contradict
property (B1) of the basis B(x\prime ) of x\prime .

Since there is no leaving basic variable, this means that \scrS (x\prime ) = \scrS (x) \cup \{ k\} .
Indeed, by the definition of d(x; k) we have x\prime 

k > 0, x\prime 
j = 0 for j \in \scrS c(x), and since

the infimum is not attained for any j \in \scrS (x), we must also have x\prime 
j > 0.

Let z \triangleq x\prime  - x. Note that B(x) \subseteq B(x\prime ) since, as we have just argued, \scrS (x) \subseteq 
\scrS (x\prime ). For all i = 1, 2, . . . ,

\infty \sum 
j=1

aijzj =
\sum 

j\in \scrS (x\prime )

aijzj =
\sum 

j\in \scrS (x\prime )

aijx
\prime 
j  - 

\sum 
j\in \scrS (x\prime )

aijxj

=
\sum 

j\in \scrS (x\prime )

aijx
\prime 
j  - 

\sum 
j\in \scrS (x)

aijxj = bi  - bi = 0,

and thus Az = 0. Since z \not = 0, this contradicts property (B1) of the basis B(x\prime ) of
nondegenerate bfs x\prime . Clearly, B(x\prime ) = B(x) \cup \{ a\cdot k\} \setminus \{ a\cdot j\ast \} .

This result shows that, under our assumptions, every basic direction admits a
unique leaving variable (uniqueness invokes nondegeneracy).

Remark 5.7. By (BD1) in Definition 5.1, the value of the entering variable in the
bfs x\prime is \lambda (x; k) since x\prime = x+ \lambda (x; k)d(x; k). Thus, if we assume (A6) and (A7), we
must have \lambda (x; k) > \sigma . That is, every pivot operation ``moves"" to a different bfs.

6. Reduced costs and optimality conditions. In this section, we explore
the properties of entering nonbasic variables. This discussion leads to establishing an
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optimality condition for CILPs based on pivoting, which serves as the condition for
optimal termination of our simplex method.

Definition 6.1. Let x be a nondegenerate bfs and k be the index of a nonba-
sic variable. The reduced cost r(x; k) of nonbasic variable k at basis x is the sum\sum \infty 

j=1 cjdj(x; k). Using the structure of d(x; k) detailed in (BD1)--(BD3), the reduced

cost is typically expressed as r(x; k) \triangleq ck +
\sum 

j\in \scrS (x) cjdj(x; k).

An alternate way of writing reduced cost is using matrix notation. Recalling
our expression for d(x; k) in (5.3), we may write the reduced cost as r(x; k) =
ck  - 

\sum 
j\in \scrS (x) cj(B(x) - 1a\cdot k)j or as a reduced cost vector r(x) = c  - c\top B(x)B(x) - 1A

with entries r(x; k) and where c\top B(x)B(x) - 1A denotes the sum
\sum 

j\in S(x) cj(B(x)) - 1A)j .

Note that here r(x; k) = 0 for any basic variable k \in S(x). Moreover,

r(x;N(x)) \triangleq (r(x; k) : k /\in S(x)) = cN(x)  - c\top B(x)B(x) - 1N(x).(6.1)

By our assumptions on c and d, the reduced cost vector is well defined. Moreover,
it is critical to note that the reduced cost of a nonbasic variable depends on the basis
of the current bfs.2 This is reflected in our choice of notation r(x; k) and r(x).

The reduced cost allows us to succinctly capture the change in objective value
when pivoting from x to x\prime \triangleq x+ \lambda (x; k)d(x; k), which is equal to

\infty \sum 
j=1

cjx
\prime 
j  - 

\infty \sum 
j=1

cjxj = \lambda (x; k)

\infty \sum 
j=1

cjdj(x; k) = \lambda (x; k)r(x; k),(6.2)

and so pivoting in a nonbasic variable with negative reduced cost will strictly improve
the objective value over the current feasible solution of (P) (recall that when (A6)
and (A7) hold, \lambda (x; k) > 0, as discussed in Remark 5.7).

The set \scrT (x) \triangleq \{ k \in \scrS c(x) : r(x; k) < 0\} of nonbasic variables at x with negative
reduced costs are the candidate choices for entering variables in a pivot. The main
result of this section is to show, under certain conditions, that if \scrT (x) = \emptyset , then we
can conclude that x is an optimal solution. This implies that the basic directions are
a sufficient set of improving directions.

Theorem 6.2 (optimality condition). Suppose (A4) and the conditions of Lemma
3.3 hold. If x is a bfs and r(x) \geq 0, then x is an optimal solution.

Proof. Suppose r(x) \geq 0 for some bfs x. For notational simplicity let B denote
the basis B(x) of x, and let N denote N(x).

Let y be any feasible solution, and let z \triangleq y  - x. Since x and y are both feasible
and thus Ax = Ay = b, we have Az = 0 since A is a linear operator. As above, we write
z as z = (zB , zN ) so that 0 = Az = BzB + NzD. Since B is invertible, multiplying
both sides by B - 1 yields 0 = B - 1BzB + B - 1NzN , and so zB =  - B - 1NzN . Hence,
we have

c\top z = (cN  - c\top BB
 - 1N)zN (more details below)(6.3)

= r(x;N)\top zN . (using (6.1))(6.4)

We give some more details on (6.3). In finite dimensions, this step is trivial; here it
requires some additional reasoning.

2When degeneracy is allowed, different bases for the same bfs may yield different reduced costs
for nonbasic variables. Under (A6), a single basis exists, and so there is a unique reduced cost for a
nonbasic variable at any bfs.
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Let cN = (\nu 1, \nu 2, . . . ), c
\top 
BB

 - 1N = (\mu 1, \mu 2, . . . ), and zN = (\eta 1, \eta 2, . . . ). The goal
is to show that (to yield (6.3))

\sum \infty 
k=1 \nu k\eta k - 

\sum \infty 
k=1 \mu k\eta k =

\sum \infty 
k=1(\nu k - \mu k)\eta k, and this

holds as long as each sum on the left-hand side is finite. We first argue that the sum\sum \infty 
k=1 \nu k\eta k is finite. Note that zN \in H since z \in H and cN satisfies the condition\sum \infty 
k=1 | \nu k| 2/\delta 2k <\infty since c satisfies (A4). By Lemma 2.2, the sum c\top z is finite, which

implies c\top NzN =
\sum \infty 

k=1 \nu k\eta k is also finite. Next, recall that
\sum \infty 

k=1 \mu k\eta k = c\top BB
 - 1NzN ,

where the right-hand side is finite for the following reasons. We know zN \in H, and
so NzN \in Y by Lemma 3.3. Thus, B - 1NzN is again in H since B - 1 maps Y to H.
By similar reasoning to the previous sum, we can thus conclude that c\top B(B

 - 1NzN ) is
finite. This allows us to conclude (6.3).

Now, observe that xN = 0 by definition of a basic variable, and so zN = yN  - 
xN = yN \geq 0 since y is feasible and thus satisfies (P.3). Moreover, by hypothesis,
r(x;N) \geq 0. This implies that r(x;N)\top zN \geq 0, so from (6.4), c\top z \geq 0, and thus
c\top y \geq c\top x for all feasible y. This implies that x is an optimal solution.

7. An (abstract) simplex method. Given our description of pivoting in
section 5 and the optimality condition in Theorem 6.2, we are now ready to state
our simplex method. We should note that we do not claim the finite implementability
of this method, merely that each operation is well defined and the termination con-
dition is valid. For this reason, we call our simplex method ``abstract""---additional
structure or assumptions are needed to implement it in general. Issues of finite im-
plementability have been discussed for special cases in the literature [19, 26, 36].

Since we have assumed that every basic solution is nondegenerate in (A6), any
choice of entering variable suffices because there is no chance of cycling (that is,
returning to a previously visited bfs). Indeed, as long as there is an entering variable
k with negative reduced cost r(x; k) < 0, Remark 5.7 shows that \lambda (x; k) > \sigma , and so by
(6.2) the objective value strictly drops with each pivot. Hence, cycling is not possible.
Thus, property (P1) holds for our simplex method. The next results structure the
possible reduced costs.

Lemma 7.1. Suppose (A4) and the conditions of Lemma 3.3 hold. For every
bfs x, let \scrT (x) = \{ k1, k2, . . . \} be the set of indices on nonbasic variables, taking
k1 \leq k2 \leq \cdot \cdot \cdot without loss of generality. Then either \scrT (x) is finite (possibly empty)
or lim\ell \rightarrow \infty r(x; k\ell ) = 0.

Proof. It suffices to show that if \scrT (x) is not finite, then lim\ell \rightarrow \infty r(x; k\ell ) = 0.
From the definition of reduced cost, we have r(x; k) = ck  - c\top B(x)B(x) - 1a\cdot k for any

k \in \scrT (x). Note that a\cdot k \in Y since a\cdot k \in cspan(A) \subseteq Y by Lemma 3.3. Hence
| r(x; k)| \leq | ck| + | cB(x)((B(x)) - 1a\cdot k)| . Now,

| c\top B(x)B(x) - 1a\cdot k)| \leq \| cB(x)\| H\| B(x) - 1a\cdot k)\| H \leq | | cB(x)| | H | | B(x) - 1| | L| | a\cdot k| | Y ,(7.1)

where | | \cdot | | L is the operator norm for the space L(H,Y ) of continuous linear operators
mapping H into Y . Hence, | r(x; k)| \leq | ck| + | | cB(x)| | H | | B(x) - 1| | L| | a\cdot k| | Y . From the

proof of Lemma 3.3 we can conclude | | a\cdot k| | Y \rightarrow 0 as k \rightarrow \infty . Indeed, since a\cdot k = Aek,
where ek is the unit vector with ekk = 1 and ekj = 0 otherwise, we have from (3.2) that

| | a\cdot k| | \leq \=a \alpha /\delta 
1 - (\alpha /\delta )2

\beta \surd 
1 - \beta 2

| | ek| | H = \=a \alpha /\delta 
1 - (\alpha /\delta )2

\beta \surd 
1 - \beta 2

\delta k

converges to 0 as k \rightarrow \infty . Also \| cB(x)\| H < \infty and \| B(x) - 1\| L < \infty since they are
bounded linear functionals and operators respectively, and | ck| \rightarrow 0 as k \rightarrow \infty by
(A4). Taken together, we can use this to conclude that lim\ell \rightarrow \infty r(x; k\ell ) = 0.
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Lemma 7.2 (most negative reduced cost). Let x be a bfs. If \scrT (x) is nonempty,
then the most negative reduced cost r\ast \triangleq infk\in \scrT (x) r(x; k) is attained by some nonbasic
variable k\ast \in \scrT (x).

Proof. Let \epsilon = r(x; k1) < 0. By Lemma 7.1, there exists an index \=\ell such that
r(x; k\ell ) > \epsilon for all \ell > \=\ell . Thus, infk\in \scrT (x) r(x; k) = min\{ r(x; k\ell ) : \ell = 0, 1, . . . , \=\ell \} . The
latter is a finite set, and so the minimum is clearly attained by some
k\ast \in \{ 0, 1, . . . , \=\ell \} .

We now have all of the ingredients to state our simplex method.

Simplex Method
1. (Initialization) Let x1 denote an initial bfs of (P). Set an iteration

counter m to 1.
2. (Compute reduced costs) Compute reduced costs r(xm; k) for all nonbasic

variables x \in \scrS c(xm).
3. (Optimality test and termination) If r(xm; k) \geq 0 for all k \in \scrS c(xm),

return xm as an optimal solution and terminate.
4. (Determine entering variable) Otherwise, select as entering variable xkm

\ast 
,

a variable with the most negative reduced cost (as defined in Lemma 7.2).
5. (Pivot) Determine a new bfs x\prime \triangleq xm + \lambda (xm; km\ast )d(xm; km\ast )
6. (Update bfs) Set xm \leftarrow x\prime and m\leftarrow m+ 1. Continue at step 2.

We briefly justify the steps of the algorithm. The optimality test in step 3 suffices to
conclude optimality by Theorem 6.2. The pivoting step (step 5) is discussed in detail
in section 5, where the objects \lambda (xm; km\ast ) and d(xm; km\ast ) are discussed. The fact that
x\prime is again a bfs was established in Theorem 5.6.

Lemma 7.3 (reduced costs converge to zero). Suppose (A6), (A7), and the con-
ditions of Theorem 5.6 and Lemma 7.2 hold. The most negative reduced cost rm\ast at
iteration m converges to zero as m \rightarrow \infty . That is, for any \epsilon > 0, there exists an
iteration counter M\epsilon such that  - \epsilon < rm\ast \leq 0 for all iterations m \geq M\epsilon .

Proof. Suppose not. There exists a subsequence of iterations mn in which r\ast mn
\leq 

 - \epsilon (note that r\ast mn
exists for eachmn by Lemma 7.2 and Theorem 5.6). Since the value

of the entering basic variable at the end of iteration mn is \lambda (xmn ; kn), Remark 5.7
implies that \lambda (xmn ; kn) \geq \sigma since (A6) and (A7) hold. Therefore, the objective
function is reduced by at least \sigma \epsilon in each one of these iterations since the entering
variable in step 4 of the simplex method has reduced cost r\ast mn

\leq  - \epsilon . But this is
impossible since the sequence of function values c\top xmn is bounded below by f\ast .

We do not discuss how to determine an initial bfs. This remains an open challenge
for many papers on CILP (see, for instance, [16, 32, 36]). In certain contexts (like
those we discuss in section 9), a starting bfs can be determined by inspection. More
generally, a big M approach seems appropriate.

8. Convergence to optimality. We now show that our simplex algorithm sat-
isfies property (P2). More precisely, we will say our algorithm has optimal value
convergence if the values of the sequence of iterates xm converge to the optimal value
f\ast of (P). More formally, let fm \triangleq c\top xm. Our goal is to show that fm \rightarrow f\ast as
m \rightarrow \infty . Of course, if the algorithm terminates, the optimal value f\ast is attained.
The interesting case is when the algorithm never terminates.

To show optimal convergence we need one final assumption. To state it we define
a topology for the subsets of columns of A that allows us to talk about the convergence

D
ow

nl
oa

de
d 

12
/1

4/
21

 to
 1

41
.2

11
.4

.2
24

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3172 ARCHIS GHATE, CHRISTOPHER T. RYAN, AND ROBERT L. SMITH

of bases. Let B be a subset of columns of A. Then, the sequence jB = (jB1 , jB2 , . . . ),
where jBi \in \{ 0, 1\} for all i, encodes a subset of columns in A, where jBi = 1 if column
ai \in B and 0 otherwise. We encode the convergence of bases ``column by column"" via
convergence in this space of sequences. Let I be the set of all \{ 0, 1\} sequences, and
define the product discrete topology on I, where jB

m

converges to jB
\ast 
if for every i

there exists an mi such that jB
m

= jB
\ast 
for all m \geq mi. In other words, convergence

corresponds to ``lock in"" in every element. We say a sequence \{ Bm\} of subsets of
columns of A converges to another subset B\ast of columns of A if and only if jB

m

converges to jB
\ast 
in the above product discrete topology on I. It is straightforward

to see that the resulting topology on subsets of columns of A is a homeomorphism
for the product discrete topology on I. We say a collection of subsets of columns of
A is closed if the limit of every convergent sequence taken from this collection is also
contained in the collection.

(A8) The set \scrB \triangleq \{ B(x) : x is a bfs of (P)\} is closed.3
The next section explores an example where (A8) holds. It is worth noting that
there are very natural settings where this assumption fails. Consider the min-cost
flow setting of [32] but now relax the condition that the graph G contains no infinite
directed cycles. Indeed, consider the graph that consists of a single infinite directed
cycle. Removing a single edge from this cycle yields a bfs corresponding to a spanning
tree. Consider the sequence of bfs's that arise by successively removing edges along
the outward directed portion of the infinite directed cycle. This sequence of bfs's
converges in the product discrete topology to the entire infinite directed cycle, which
is clearly not a bfs.

Lemma 8.1 (bases converge in product discrete topology). Suppose assumption
(A8) holds. Let (Bm : m = 1, 2, . . . ) be a sequence of bases. Then there exist a
subsequence Bmn and a basis B\ast such that Bmn converges to B\ast in the product discrete
topology.

Proof. To prove the lemma it suffices to show that the set \scrB of bases is sequentially
compact in the product discrete topology. Since closed subsets of sequentially compact
spaces are sequentially compact, by assumption (A8), it suffices to show that the
set of all columns of A is a sequentially compact space under the product discrete
topology described above. Indeed, the product discrete topology on A is metrizable
and compact by Theorems 2.61 and 3.36 in [3]. Compact subspaces of metric spaces
are sequentially compact (Theorem 3.28 in [3]), and thus the product discrete topology
on A is sequentially compact.

Convergence in the product discrete topology is not a standard notion of conver-
gence of linear operators. Accordingly, some work needs to be done to leverage this
condition.

First, we show that convergence in the product discrete topology implies the more
common notion of convergence in the operator norm. The difficulty here is that, as
an operator, we think of each B defining an invertible operator on a different space.
That is, the basis B defines the invertible operator B : HB \rightarrow Y , where HB is defined
above Lemma 4.3. It is important in the arguments that follow to redefine B over a
common domain. Let B be the basis of A that consists of columns of A indexed by
jk for k = 1, 2, . . . . Let TB denote the mapping from \ell 2 into HB with TB(x) = x\prime ,
where

3The fact that \scrB is the collection of all bases relies on the assumption that all bfs's are nonde-
generate (B2), and thus every basis is of the form B(x) for some bfs x.
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x\prime 
j =

\Biggl\{ 
xk/\delta 

jk if j = jk for k = 1, 2, . . . ,

0, otherwise.
(8.1)

Thus, we can define \~B := BTB , which remains an invertible and continuous linear
operator from \ell 2 into Y since both B (by Lemma 4.3) and TB (trivially) are invertible
and continuous linear operators.

Suppose Lm (for m = 1, 2, . . . ) and L are bounded linear maps between \ell 2 and
Y . Then we say that Lm converges to L in the operator norm if | | Lm  - L| | \rightarrow 0 as
m \rightarrow \infty (where, here, | | \cdot | | denotes the operator norm). This is equivalent to the
statement that | | Lmx - Lx| | Y \rightarrow 0 uniformly for all x \in \ell 2 such that | | x| | \ell 2 \leq 1.

Consider the linear operators \~Bm and \~B\ast , where Bm and B\ast are defined in
Lemma 8.1. The following result shows that convergence of Bmn to B\ast in the product
discrete topology implies that \~Bmn \rightarrow \~B\ast in the operator norm.

Lemma 8.2 (bases converge in the operator norm). Suppose (A3) and the con-
ditions of Lemma 8.1 hold and 0 < \alpha < \delta < 1. Then the subsequence of linear
operators \~Bmn converges to \~B\ast in the operator norm (where Bmn and B\ast are defined
in Lemma 8.1).

Proof. By Lemma 8.1, the Bmn converges to B\ast in the product discrete topology.
To simplify notation, we let \~Bn denote the linear operator \~Bmn from \ell 2 to Y defined by
\~Bmn = BmnTBmn , where TBmn is defined in (8.1). To show \~Bn \rightarrow \~B\ast in the operator
norm we must show | | \~Bnx - \~B\ast x| | Y \rightarrow 0 uniformly for all x with | | x| | \ell 2 \leq 1. Let x \in \ell 2

be such that | | x| | \ell 2 \leq 1. Using the above constructs, we have \~Bx = B(TBx) = Bx\prime =
B(xk/\delta 

jk) = (a\cdot j1/\delta 
j1 , a\cdot j2/\delta 

j2 , . . . )x. Hence, we have \~Bnx =
\sum \infty 

k=1 \delta 
 - jnk xka\cdot jnk and

\~B\ast x =
\sum \infty 

k=1 \delta 
 - j\ast kxka\cdot j\ast k (where we use the shorthand jmn

k to denote jB
mn

k and j\ast k to

denote jB
\ast 

k ) so that

\~Bnx - \~B\ast x =

\infty \sum 
k=kn+1

\Bigl( 
\delta  - jnk xka\cdot jnk  - \delta  - j\ast kxka\cdot j\ast k

\Bigr) 
=

\infty \sum 
k=kn+1

\Bigl( 
\delta  - jnk a\cdot jnk  - \delta  - j\ast ka\cdot j\ast k

\Bigr) 
xk

since jnk = j\ast k for k \leq kn for some kn for each n, where kn \rightarrow \infty as n \rightarrow \infty . This
follows from the fact Bn converges to B\ast in the product discrete topology. Thus, we
have

| | \~Bnx - \~B\ast x| | Y \leq 
\infty \sum 

k=kn+1

| | 
\Bigl( 
\delta  - jnk a\cdot jkn  - \delta  - j\ast ka\cdot j\ast k

\Bigr) 
xk| | Y

=

\infty \sum 
k=kn+1

\sqrt{}    \infty \sum 
i=1

\beta 2i| \delta  - jnk aijnk  - \delta  - j\ast kaij\ast k | 2| xk| 2.(8.2)

By (A3), we have aijnk \leq \=a\alpha jnk and aij\ast n \leq \=a\alpha j\ast k . The significance of this bound is that
we can unravel much of the dependency of the square root terms in (8.2) on the index
i, yielding

| | \~Bnx - \~B\ast x| | Y \leq 
\infty \sum 

k=kn+1

\sqrt{}    \infty \sum 
i=1

\beta 2i\=a2| \delta  - jnk \alpha jnk  - \delta  - j\ast k\alpha j\ast k | 2| xk| 2

= \=a

\infty \sum 
k=kn+1

| (\alpha \delta )
jkn  - (\alpha \delta )

j\ast n | | xk| 

\sqrt{}    \infty \sum 
i=1

\beta 2i
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= \=a\beta \surd 
1 - \beta 2

\infty \sum 
k=kn+1

| (\alpha \delta )
jkn  - (\alpha \delta )

j\ast n | | xk| 

\leq \=a\beta \surd 
1 - \beta 2

\gamma kn

\infty \sum 
k=1

| \gamma k + \gamma k| | xk+kn
| ,(8.3)

where, in the last step, \gamma = \alpha /\delta and so because jnk \geq k, we have j\ast k \geq k. Finally we
can develop the remaining sum in (8.3) as follows:

\infty \sum 
k=1

| \gamma k  - \gamma k| | xk+kn | = 2

\infty \sum 
k=1

\gamma k| xk+kn | \leq 2

\infty \sum 
k=1

\gamma k = 2 \gamma 
1 - \gamma ,

where the inequality follows since | | x| | \ell 2 \leq 1. Returning to (8.3), we have

| | \~Bnx - \~B\ast x| | Y \leq 2\=a\alpha \beta \gamma \surd 
1 - \beta 2(1 - \gamma )

\gamma kn .

Since \gamma < 1 and kn \rightarrow \infty as n \rightarrow \infty and the fact that right-hand side of the above
equation does not depend on x for any x \in \ell 2, we have \~Bn \rightarrow \~B\ast in the operator
norm, completing the proof.

We can now state and prove the main result of the paper.

Theorem 8.3 (optimal value convergence). Suppose (A1)--(A8) hold with 0 <
\beta < 1 and 0 < \alpha < \delta < 1 and the Simplex Method does not terminate. Let
fm \triangleq 

\sum 
j=1 cjx

m
j be the sequence of values of iterates xm of the Simplex Method.

Then fm \rightarrow f\ast . Moreover, there exists a subsequence of the xm that converges to an
optimal solution x\ast .

Proof. By Lemmas 8.1 and 8.2, there exist a subsequence of bases Bmn that
converges to a basis B\ast in the product discrete topology and associated maps \~Bmn

that converge to \~B\ast in the operator norm. As noted below (8.1), each of the \~Bmn are
continuous and invertible maps from \ell 2 to Y . Let \Phi denote the mapping that sends
invertible operators to their inverse; that is, \Phi ( \~B) = \~B - 1. By Theorem IV.1.5 in
[37],4 the mapping \Phi is continuous. This implies that ( \~Bmn) - 1 converges to ( \~B\ast ) - 1

in the operator norm.
Let xmn = (Bmn) - 1b and x\ast = (B\ast ) - 1b. Accordingly, xmn = T - 1

Bmn ( \~B
mn) - 1b,

and x\ast = T - 1
B\ast ( \~B\ast ) - 1b. It is straightforward to see that since Bmn converges to B\ast 

in the product discrete topology, we have TBmn \rightarrow TB\ast and thus T - 1
Bmm \rightarrow T - 1

B\ast again

by appealing to Theorem IV.1.5 in [37]. Hence, we have xmn = T - 1
Bmn ( \~B

mn) - 1b \rightarrow 
T - 1
B\ast ( \~B\ast ) - 1b = x\ast since T - 1

Bmn \rightarrow T - 1
B\ast and ( \~Bmn) - 1 \rightarrow ( \~B\ast ) - 1, both in the operator

norm. That is, there exists a subsequence of the xm that converges to a basic solution
x\ast in the norm topology of H. Moreover, since (Bmn) - 1b \geq 0 and each of the xmn is
a bfs, we can conclude that (B\ast ) - 1b \geq 0 by continuity. This implies that x\ast is a bfs.

Finally, we claim that x\ast is an optimal solution. To do so, we use Theorem 6.2
and show that the reduced costs r(x\ast ; k) \geq 0 for all k \in Sc(x\ast ). Recall the definition
of reduced cost has r(x\ast ; k) = ck +

\sum 
j\in S\ast cj(B

\ast ) - 1a\cdot k, where S\ast is the support of

x\ast and k /\in S\ast . Similarly, let Smn denote the support of xmn .5 We will show that
r(xmn ; k)\rightarrow r(x\ast ; k) as n\rightarrow \infty for all k /\in S\ast . Indeed,

4Note that Theorem IV.1.5 [37] is stated for settings where B : X \rightarrow X is a linear operator for
some given Banach space X. However, the paragraph following the proof of the theorem (see page
193 of [37]) shows that it applies to linear operators B : X \rightarrow Y , where X and Y are (potentially
different) Banach spaces under conditions satisfied in our setting. Here we take X = \ell 2.

5We make these changes in notation in order for the displayed equation below to be less crowded.
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| r(xmn ; k) - r(x\ast ; k)| =

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
j\in Smn

cj((B
mn) - 1a\cdot k)j  - 

\sum 
j\in S\ast 

cj((B
\ast ) - 1a\cdot k)j

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

j\in Smn\cap S\ast 

cj(((B
mn) - 1  - (B\ast ) - 1)a\cdot k)j +

\sum 
j\in Smn\setminus S\ast 

cj((B
mn) - 1a\cdot k)j

 - 
\sum 

j\in S\ast \setminus Smn

cj((B
\ast ) - 1a\cdot k)j

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\sum 
j\in Smn\cap S\ast 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| cj(((Bmn) - 1 - (B\ast ) - 1)a\cdot k)j | +
\sum 

j\in Smn\setminus S\ast 

| cj((Bmn) - 1a\cdot k)j | 

+
\sum 

j\in S\ast \setminus Smn

| cj((B\ast ) - 1a\cdot k)j .

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
The first time on the right-hand side converges to zero since ( \~Bmn) - 1 converges to
( \~B\ast ) - 1 in the operator norm. Moreover, the sets Smn \setminus S\ast and S\ast \setminus Smn vanish in
the limit (by Lemma 8.1), and so the second two sums also converge to 0. These
observations involve an exchange of an infinite sum with a limit (as n \rightarrow \infty ). This
exchange is legitimate under the dominated convergence theorem since for any subset
S of \{ 1, 2, . . . \} ,

\sum 
j\in S | cj((Bmn) - 1a\cdot k)j | \leq 

\sum \infty 
j=1 | cjx

mn
j | <\infty since xmn is a bfs and

all feasible solutions have finite cost (and also when replacing Bmn and xmn with B\ast 

and x\ast , respectively).
It remains to argue that r(x\ast ; k) \geq 0 for all k /\in S\ast . Suppose otherwise that

r(x\ast ; k) =  - \epsilon < 0 for some k /\in S\ast and \epsilon > 0. Since r(xmn ; k)\rightarrow r(x\ast ; k), this implies
that for sufficiently large n, r(xmn ; k) =  - \epsilon < 0. This contradicts Lemma 7.3. Hence,
we can conclude that the reduced costs of all nonbasic variables at x\ast are nonnegative.
Hence, by Theorem 6.2, x\ast is an optimal solution.

By construction, the iterates of the simplex method have nondecreasing objective
value. Thus, since we have just argued that x\ast is optimal, we know fmn \rightarrow f\ast , and
since objective values are nondecreasing, this implies fm \rightarrow f\ast .

Here is a brief comment on how the various assumptions are used in our main
Theorem 8.3. Assumptions (A1)--(A4) are invoked in the call to Theorem 6.2, the
call to Lemma 7.3 additionally uses (A6) and (A7), and finally the call to Lemma 8.2
additionally uses (A8).

Although Theorem 8.3 does not furnish the optimal solution convergence desired
in (P4), the next result shows that the iterates of the simplex method become ``arbi-
trarily close"" to the set of optimal solutions. The Hilbert topology has an associated
metric d, where d(x, y) = | | x - y| | H . The distance from a point y to a set S is denoted
d(y, S) := inf \{ d(y, s) : s \in S\} . We say a sequence yn gets arbitrarily close to S if
d(yn, S)\rightarrow 0 as n\rightarrow \infty .

Theorem 8.4. The sequence of simplex iterates gets arbitrarily close to the set
of optimal solutions to (P). In particular, if there is a unique optimal solution, then
the full sequence of iterates converges to an optimal solution.

Proof. Let F \ast denote the set of optimal solutions of (P). Suppose there exist a
subsequence xmn of simplex iterates and an \epsilon > 0 such that d(xmn , F \ast ) > \epsilon for all n
sufficiently large. By the compactness argument in the proof of the previous theorem,
there exists a convergent subsubsequence of xmn that converges to an optimal feasible
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solution x\ast \in F \ast . However, this contradicts the supposition that d(xmn , F \ast ) > \epsilon for
all n sufficiently large.

9. Examples. In this section, we look at a class of CILPs that satisfy (A1)--
(A8), and thus, by Theorem 8.3, our simplex method converges to optimal value.
A goal of this paper was to extract analytical insight from this example to build
the topological structure of ``tractable"" CILPs. This was achieved in the previous
sections. In this section, we will reflect this theory back on this special case to ground
our contributions.

The following setup of minimum cost flow problems on pure supply networks is due
to [32]. We show that these flow problems satisfy (A1)--(A8) under the observation
that (A6)--(A8) can actually be weakened. Instead of applying it to all bfs's (and
extreme points), it suffices for (A6)--(A8) for all bfs's encountered in a run of the
simplex method.

Let G = (\scrN ,\scrA ) be a directed graph with countably many nodes \scrN = \{ 1, 2, . . . \} 
and arcs \scrA \subseteq \scrN \times \scrN . Each arc (i, j) has cost cij , and each node has supply bi (with
bi < 0 corresponding to a demand). The goal of the countably infinite network flow
problem is to solve

inf
x

\sum 
(i,j)\in \scrA 

cijxij(9.1a)

s.t.
\sum 

j:(i,j)\in \scrA 

xij  - 
\sum 

j:(j,i)\in \scrA 

xji = bi for i \in \scrN ,(9.1b)

xij \geq 0 for (i, j) \in \scrA .(9.1c)

A graph is locally finite if every node has finite in- and out-degrees. Two nodes i and
j are finitely connected in G if there exists a finite path Pij between i and j. The
graph G is finitely connected if all pairs of nodes in G are finitely connected. A path to
infinity is a sequence of distinct nodes i1, i2, . . . where (ik, ik+1) \in \scrA or (ik+1, ik) \in \scrA 
for k = 1, 2, . . . . An infinite cycle consists of two paths to infinity from some node
i, (i, i1, i2 . . . ) and (i, j1, j2, . . . ), where all intermediate nodes ik and j\ell are distinct.
A spanning tree is a subgraph of G that contains no finite or infinite cycles and is
incident to all nodes. A basic feasible flow in G is a feasible solution of (9.1) such that
the subgraph induced by the arcs with positive flow is contained in a spanning tree
of the graph. When the set of arcs of a flow x with positive flow themselves form a
spanning tree, we call x a nondegenerate basic feasible flow. Of particular importance
to the analysis in [32] is the following special class of spanning trees. A spanning in-
tree S rooted at infinity is a spanning tree where for each node i \in N there is a unique
path from i to infinity in S that contains only forward arcs directed to ``infinity.""
Ryan, Smith, and Epelman [32] also make the following additional assumptions:

(NF1) G is locally finite.
(NF2) G is finitely connected.
(NF3) G contains no finite or infinite directed cycles.
(NF4) bi is integer for all i \in \scrN .
(NF5) b \in \ell \infty (\scrN ); i.e., there exists a uniform upper bound \=b on absolute values

of all node supplies.
(NF6) G has finitely many nodes with in-degree 0.
(NF7) bi \geq 0 for all i \in \scrN (all nodes are either transshipment nodes or supply

nodes).
Assumptions (NF6) and (NF7) ensure that graph G permits stages, defined as follows.
Stage 0 is the finite set of all nodes with in-degree 0. Stage 1 consists of all nodes
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with in-degree 0 in the modified graph that results from removing all stage 0 nodes
and their adjacent arcs. Thus, all stage 1 nodes are adjacent to stage 0 nodes in the
graph. We construct the subsequent stages by repeating this procedure.

In [32], the following additional assumption is made on the structure of stages:
(NF8) There exist \beta \in (0, 1) and \gamma \in (0,+\infty ) such that for every (i, j) \in \scrA ,

| cij | \leq \gamma \beta s(i), where \beta can be interpreted as a discount factor (discounted
arc costs) and s(i) is the stage of node i.

(NF9) There exists a subexponential function g(k), where | Sk| \leq g(k) for all k.
We refer to problems satisfying (NF1)--(NF9) as pure supply problems. Clearly, (9.1)
is in the form (P), so it remains to check that (A1)--(A8) hold when (NF1)--(NF9) are
taken.

Before checking these, it will be convenient to reformulate (9.1) by augmenting
the supply on certain nodes (for reasons that will become apparent once we check
(A6)). Let N \prime = (\scrN ,\scrA , b\prime , c) denote the network with the same graph and arc costs
but with supply b\prime i = bi if bi > 0 and b\prime i = 1 if bi = 0. Observe that if N is a pure
supply network, then so is N \prime .

The key property of network N \prime is given in Lemma 4.8 of [32], which we recall
as follows. Let T denote a spanning tree in N . Any arc (i, j) not in T has a reduced
cost that corresponds to the cost of the cycle that it is formed in T when arc (i, j) is
added to T (where the costs of arcs are weighted with 1 or  - 1 according to whether
they are in the same direction as (i, j) in the cycle or not; for a formal definition
see the discussion preceding Lemma 3.3 in [32]). The key property of Lemma 4.8 is
that the reduced cost of arc (i, j) with respect to spanning tree T in the augmented
network N \prime is the same as the reduced cost of arc (i, j) with respect to T in the
original network N . Moreover, flows in N \prime can easily be converted to flows in N .
Indeed, an optimal solution for the augmented problem yields an optimal solution
for the original problem if we remove all flows originating from augmented supplies.
Hence, it suffices to run a simplex algorithm on N \prime to recover a simplex method on
N . It only remains to verify (A1)--(A8) hold for N \prime .

Not every instance of (9.1) is feasible, but we will only discuss feasible instances,
and so we may assume that (A1) holds. If an instance of (9.1) is feasible, then taking a
single outgoing arc from every node forms an initial spanning tree T0 and corresponds
to a basic feasible flow (Lemma 4.4 in [32]). Lemma 4.2 in [32] shows that trees
constructed in this way are always spanning in-trees rooted at infinity.

Although there are no explicit bounding constraints in (9.1), Lemma 2.6 in [32]
shows that there is an implied bound on the flow on every arc. This is implicit from
the uniform boundedness of supplies (NF5) and finiteness of the stages. Condition
(A4) is a direct implication of (NF8) when \delta is taken sufficiently large. The argument
here is similar in spirit to the proof of Lemma 2.4; details are omitted. For (A3),
we can rescale the constraint (9.1b) to satisfy the necessary conditions. The finite
support of both rows and columns of the constraint matrix makes such a rescaling
possible. This finiteness of rows and columns is a consequence of the fact that graph
G is finitely connected (NF2). Condition (A4) follows easily from (NF8) and (NF9).

Establishing (A5) requires more effort. In fact, we will show that every basis
defines an onto map into Y , thus establishing the result for A since we have cspan(A) =
cspan(B) for every basis B. In [32], a basis B corresponds to the arcs of a spanning
in-tree rooted at infinity. It suffices to argue that B : HB \rightarrow Y is an onto map for
\beta > \delta , where HB is defined before Lemma 4.3. We already know that B : HB \rightarrow Y
by Lemma 3.3. Let y \in Y , and we will show that there exists an x \in HB such that
Bx = y. We have | | y| | 2Y =

\sum \infty 
i=1 \beta 

2i| yi| 2 < \infty since y \in Y . Let \~yi = max\{ 1, | yi| \} 
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for i = 1, 2, . . . , and note that
\sum \infty 

i=1 \beta 
2i| \~yi| 2 < \infty . Let the nodes in the tree T (B)

be numbered so that arc (i, j) \in T (B) only if i < j. We have that there is a unique
directed path to infinity out of each node i in T (B). Let P (i) be the finite set
of all nodes k such that the unique path to infinity out of node k passes through
node i. This set is finite by Lemma 4.1 in [32]. The flow constraints Bx = b then
gives xij =

\sum 
k\in P (i) yk, where (i, j) is the unique arc leaving node i in T (B) (the

uniqueness of this arc is also guaranteed by Lemma 4.1 in [32]). It remains to show

that | | x| | H <\infty for such an x. We have | xij | \leq 
\sum 

k\in P (i) | yk| \leq 
\sum i

k=1 | yk| \leq 
\sum i

k=1 | \~yk| 
so that | xij | 2 \leq (

\sum i
k=1 | \~yk| )2 since

\sum i
k=1 | \~yk| \geq 1. Hence,

| | x| | 2H =
\sum 

(i,j)\in T (B)

\delta 2i| xij | 2 \leq 
\infty \sum 
i=1

\delta 2i

\Biggl( 
i\sum 

k=1

| \~yk| 

\Biggr) 2

(9.2)

since xij = 0 for (i, j) /\in T (B). It thus remains to argue that
\sum \infty 

i=1 \delta 
2i(
\sum i

k=1 | \~yk| )2 <
\infty , which will complete the proof. First, observe that there exist an I and a \=y > 1
such that | \~yi| < \=y/\beta i for all i \geq I. Indeed, suppose otherwise that | \~yi| \geq \=y/\beta i for
some subsequence i = i1, i2, . . . , in which case

\infty \sum 
i=1

\beta 2i| \~yi| 2 \geq 
\infty \sum 
k=1

| \~yik | 2 \geq 
\infty \sum 
k=1

\beta 2ik(\=y/\beta ik)2 =

\infty \sum 
k=1

\=y =\infty ,

which contradicts the fact that y \in Y , and thus
\sum \infty 

i=1 \beta 
2i| \~yi| 2 < \infty . Thus, we may

develop the second sum in the right-hand side of (9.2) as
\sum i

k=1 | \~yk| \leq 
\sum i

k=1(\=y(I) +

\=y/\beta i), where \=y(I) = maxk\leq I | \~yk| . Hence,
\sum i

k=1 | \~yk| \leq i\=y(I) + i\=y/\beta i. Thus, returning
to (9.2), we have

| | x| | 2H \leq 
\infty \sum 
i=1

\delta 2i

\Biggl( 
i\sum 

k=1

| \~yk| 

\Biggr) 2

\leq 
\infty \sum 
i=1

\delta 2i(i\=y(I) + i\=y/\beta i)2

= \~y(I)

\infty \sum 
i=1

\delta 2ii2 + 2\=y(I)\=y

\infty \sum 
i=1

(\delta 2/\beta )ii2 + \=y2
\infty \sum 
i=1

(\delta /\beta )2ii2 <\infty 

whenever 0 < \delta < \beta < 1. Hence, x \in HB , and we conclude that A is an onto map,
establishing (A5).

In general, (9.1) need not be nondegenerate, and so (A6) may not hold. However,
under the transformation to N \prime , all bfs's are nondegenerate. It is easy to see that
every spanning tree in N \prime is a spanning in-tree rooted at infinity. Moreover, in the
augmented N \prime , a spanning in-tree rooted at infinity S corresponds to a nondegenerate
basic feasible flow xS since every node has positive supply and a single outgoing
arc. Accordingly, every arc carries positive flow, and thus xS is nondegenerate. In
other words, there is a way to pivot from a nondegenerate basic feasible flow to a
nondegenerate basic feasible flow for every choice of entering variable back in the
original problem using the augmented network N \prime . Undertaking only such pivots in
the simplex method defined in section 7, we see that only nondegenerate basic feasible
flows can be encountered by the simplex method.

Condition (A7) on the supports of extreme points follows from Theorem 3.2 in
[32]. That result shows that every basic feasible flow is integer valued when the data
are integer and, consequently, \sigma \geq 1.

When we showed (A6) above, we remarked on how the simplex method can be
made to pivot from spanning in-trees rooted at infinity to spanning in-trees rooted

D
ow

nl
oa

de
d 

12
/1

4/
21

 to
 1

41
.2

11
.4

.2
24

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIMPLEX METHOD FOR CILPS 3179

at infinity. Corollary 4.15 in [32] shows that any convergent subsequence of such a
sequence of iterate trees converges to yet another spanning in-tree rooted at infinity
in the product discrete topology. This verifies (A8) and completes our verification
that the pure supply countably infinite network flow problem fits the setting of the
current paper and can be solved via the simplex method proposed in section 7.

10. Conclusion. In this conclusion, we will provide a high-level summary of
some of the insights our framework provides---particularly in its novel topological
underpinning---for solving CILPs via a simplex method. First, (A6) is critical. This
assumption guarantees that we are able to ``move,"" at least a little bit, at every pivot.
The SPS assumption (A7) means that there is a lower bound on this ``little bit"" that
is moved. Taken together, these properties guarantee that progress toward optimality
is achieved as the simplex method runs.

However, ``positive progress"" toward optimality does not guarantee convergence.
A key ingredient is (A8). The SPS condition (A7) guarantees that extreme points have
an algebraic characterization as bfs's, which gives rise to the mechanics of tracking how
the simplex method iterates from bfs to bfs through exploring successive bases. The
closure of the set of bases implies a convergence of a subsequence of these bfs iterates
and hence in their objective values. The property that reduced costs converge to zero
(Lemma 7.1), along with the optimality condition in Theorem 6.2, ensure convergence
to optimality (Lemma 7.2).

In future work, it would be interesting to find settings where some of our as-
sumptions fail, and yet a simplex method can be constructed that converges in value
to optimality. Of course, this paper has only examined general conditions to ensure
properties (P1) and (P2) discussed in the introduction. Exploration of what general
conditions ensure (P3) and (P4) is a promising future direction. Some of the examples
in the previous section have these properties, giving the interested reader a foothold
on that journey.

Appendix A. Proofs of Lemmas 3.4 and 4.3.
The first step is to establish an isometric isomorphism between H and \ell 2, the

space of square-summable sequences. Consider the transformation T\delta from H into \BbbR \BbbN 

defined by T\delta (x) = (\delta jxj). Let x(\delta ) denote the image of x under T\delta for notational
convenience.

Claim A.1. The spaces H and \ell 2 are isometrically isomorphic under mapping T\delta .

Proof. First, we claim that T\delta is an isometry. Indeed, | | x| | H =
\sqrt{} \sum \infty 

j=1 \delta 
2j | xj | 2 =\sqrt{} \sum \infty 

j=1 | \delta jxj | 2 = | | T\delta (x)| | \ell 2 . Next, observe that T\delta : H \rightarrow \ell 2. Indeed, for x \in H

note that | | x(\delta )| | 22 = | | x| | 2H < \infty so x(\delta ) \in \ell 2. Second, we claim that T\delta : H \rightarrow \ell 2

is onto. Let y \in \ell 2, and set xj = (yj/\delta 
j) for j = 1, 2, . . . . Observe that T\delta (x) =

(\delta j(yj/\delta 
j)) = (yj) = y. Thus, it suffices to argue that x \in H. This follows since

| | x| | H =
\sum \infty 

j=1 \delta 
2j | xj | 2 =

\sum \infty 
j=1 \delta 

2j | yj/\delta j | 2 =
\sum \infty 

j=1 \delta 
2j | yj | 2/\delta 2j =

\sum \infty 
j=1 | yj | < \infty 

since y \in \ell 2. Third, we claim that T\delta : H \rightarrow \ell 2 is one-to-one. Indeed, if x \not = x\prime 

in H, then, since T\delta is a linear map, | | T\delta (x)  - T\delta (x
\prime )| | \ell 2 = | | x  - x\prime | | H \not = 0. Hence,

T\delta (x) \not = T\delta (x
\prime ), and T\delta is one-to-one.

Consider now the transformation T\beta ,A : cspan(A) \rightarrow \ell 2, where cspan(A) is the
column span of the infinite matrix A over H and T\beta ,A(y) = (\beta iyi). By an identical
argument as above, T\beta ,A is an isometric isomorphism between cspan(A) and \ell 2. Using
T\delta and T\beta ,A we construct a ``pullback"" linear operator A\prime := T\beta ,AAT - 1

\delta from \ell 2 to \ell 2

from the operator from H to Y defined by A.
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Claim A.2. The linear operator A is continuous if and only if A\prime is continuous.

Proof. It is straightforward to see that T - 1
\delta and T\beta ,A are bounded linear operators

with an operator norm equal to 1 since both are isometries and so (for instance)

| | T\beta ,A| | = sup
y\in cspan(A)

| | T\beta ,A(y)| | \ell 2
| | y| | Y = sup

y\in cspan(A)

| | y| | Y
| | y| | Y = 1 <\infty .

Now, since A\prime = T\beta ,AAT - 1
\delta , we have | | A\prime | | \leq | | T\beta ,A| | | | A| | | | T - 1

\delta | | = | | A| | so A\prime is a
bounded linear operator whenever A is. Multiplying the above equation defining A\prime 

on the left by T - 1
\beta ,A and on the right by T\delta we get A = T - 1

\beta ,AA
\prime T\delta ; so A is bounded

whenever A\prime is. In fact, | | A| | = | | A\prime | | .
Thus, we have reduced showing the continuity of A to establishing the continuity

of A\prime . Since A\prime is a linear operator from \ell 2 to \ell 2, we can leverage from the following
lemma.

Lemma A.3 (Schur test, page 260 in [12]). If a doubly infinite matrix M = (mij)
satisfies (i)

\sum \infty 
j=1 | mij | \leq B1 for every i and (ii)

\sum \infty 
i=1 | mij | \leq B2 for every j, then

the operator M is bounded and | | M | | \leq 
\surd 
B1B2.

We now apply the Schur test to A\prime . It a straightforward exercise to show that
A\prime = (mij) has mij = \beta i/\delta jaij . To check (i) in the Schur test holds, observe that

\infty \sum 
j=1

\beta i

\delta j | aij | = \beta i
\infty \sum 
j=1

1
\delta j | aij | \leq \beta i

\infty \sum 
j=1

1
\delta j \=a\alpha 

j = \beta i\=a

\infty \sum 
j=1

\bigl( 
\alpha 
\delta 

\bigr) j \leq \=a \alpha /\delta 
1 - \alpha /\delta = B1,

where the first inequality holds by (A3) and the fact 0 < \beta < 1 and 0 < \alpha < \delta < 1.
Similarly,

\infty \sum 
i=1

\beta i

\delta j | aij | =
1
\delta j

\infty \sum 
i=1

\beta i| aij | \leq 1
\delta j

\infty \sum 
i=1

\beta i\=a\alpha j = 1
\delta j \=a

\infty \sum 
i=1

(\alpha \beta )i \leq \=a \alpha \beta 
1 - \alpha \beta = B2.

Proof of Lemma 3.4. Under the assumptions, A\prime is a continuous map from \ell 2 to
\ell 2 by the Schur test (Lemma A.3). Then by Claim A.2, we have that A is a continuous
mapping from H to Y . This completes the proof.

Proof of Lemma 4.3. It remains to prove that B is a continuous operator. Recall
that the basis B defines an operator B : HB \rightarrow Y . Under the assumptions, B is

a bounded linear operator. Indeed, | | B| | = supx\in HB

| | Bx| | Y
| | x| | H = supx\in HB

| | Ax| | Y
| | xH | | \leq 

supx\in H
| | Ax| | Y
| | x| | H = | | A| | <\infty , where the second equality follows since B(x) = A(x) for

x \in HB and the last (strict) inequality follows from Lemma 3.4.

Appendix B. Proof of Proposition 5.5.

Lemma B.1. Let E be an extreme subset of S, a nonempty subset of \BbbR \BbbN . Given
another nonempty subset T of \BbbR \BbbN , (i) if E \subseteq T \subseteq S, then E is an extreme subset of
T and (ii) E \cap T is an extreme subset of S \cap T .

Definition B.2. Let x be a nondegenerate bfs. The cone of feasible directions
(from x) is \scrC (x) \triangleq \{ z \in H : x+ \lambda z \in \scrF for some \lambda > 0\} . Define also the translation
\=\scrC (x) of \scrC (x) by x. That is, \=\scrC (x) \triangleq x+ \scrC (x) = \{ y \in H : y = x+ z, z \in \scrC (x)\} .

Observe that \scrF itself is a subset of \=\scrC (x) since y - x \in \scrC (x) for every y \in \scrF (simply
take \lambda = 1). In light of Lemma B.1(ii), we may focus attention on understanding
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extreme subsets E of \=\scrC (x) (which turns out to be an easier task) since E \cap \scrF is an
extreme subset of \scrF = \=\scrC (x) \cap \scrF .

Following the above logic, we will examine an extreme subset of the translated
cone \scrC (x). First, consider the set \scrE (x; k) \triangleq \{ \xi \in H : \xi = \mu d(x; k), \mu \geq 0\} . We show
this is an extreme subset (in fact, an edge) of the cone of feasible directions.

Claim B.3. \scrE (x; k) is \scrC (x)-extreme.

Proof of Claim B.3. First notice that \scrE (x; k) \subseteq \scrC (x). To see this, consider a \xi =
\mu d(x; k) for some \mu > 0 (we omit the trivial case of \mu = 0). Thus, \xi \in \scrE (x; k). In order
to show that \scrE (x; k) \subseteq \scrC (x), we must show that \xi \in \scrC (x), that is, that there exists a
\lambda > 0 such that x + \lambda \mu d(x; k) \in \scrF . Note that setting \lambda = \lambda (x; k)/\mu works. Now to
prove our claim, let \eta , \chi \in \scrC (x) and 0 < t < 1 be such that t\eta +(1 - t)\chi \in \scrE (x; k). We
need to prove that \eta , \chi \in \scrE (x; k). Since \eta , \chi \in \scrC (x), there exist \lambda \eta > 0 and \lambda \chi > 0 such
that x+\lambda \eta \eta \in \scrF and x+\lambda \chi \chi \in \scrF . That is, x+\lambda \eta \eta \geq 0,

\sum \infty 
j=1 aij\eta j = 0, i = 1, 2, . . .,

and x+\lambda \chi \xi \geq 0,
\sum \infty 

j=1 aij\xi j = 0, i = 1, 2, . . . . Moreover, since t\eta +(1 - t)\chi \in \scrE (x; k),
there exists a \mu \geq 0 such that \mu d(x; k) = t\eta +(1 - t)\chi . To establish that \eta , \chi \in \scrE (x; k),
we need to construct \mu 1 \geq 0 and \mu 2 \geq 0 such that \eta = \mu 1d(x; k) and \chi = \mu 2d(x; k).
To achieve this, we consider three types of components of \eta and \chi . The first type is
component j \in \scrS c(x) such that j \not = k. For these components, xj = 0, and hence we
know that \eta j \geq 0, \chi j \geq 0. In addition, dj(x; k) = 0. Thus, \mu dj(x; k) = t\eta j +(1 - t)\chi j

implies that \eta j = 0 and \chi j = 0. Our second type of component in fact only includes
component k. For this component, dk(x; k) = 1. In addition, xk = 0 implies that
\eta k \geq 0 and \chi k \geq 0. As a result, \mu = t\eta k + (1 - t)\chi k implies \chi k = \mu  - t\eta k

1 - t .
The third type of component is j \in \scrS (x). For these components, we have\sum 

j\in \scrS (x)

aij\eta j =  - \eta kaik, i = 1, 2, . . . , and(B.1)

\sum 
j\in \scrS (x)

aij\chi j =  - \chi kaik =  - \mu  - t\eta k

1 - t aik, i = 1, 2, . . . .(B.2)

But since the basic direction d(x; k) is unique, the system of equations (B.1) implies
that \eta j = \eta kdj(x; k) for all j \in \scrS (x). It is clear that this is a solution to (B.1). To see
that this is the only solution, we proceed by contradiction. So, suppose there is an
alternate solution \zeta j for j \in \scrS (x) to (B.1). This implies that

\sum 
j\in \scrS (x) aij(\eta j  - \zeta j) = 0

for i = 1, 2, . . . with \eta j \not = \zeta j for at least one j \in \scrS (x). But this contradicts the
fact that x is a basic solution. Similarly, the system of equations (B.2) implies that
\chi j = \mu  - t\eta k

1 - t dj(x; k) for all j \in \scrS (x). In summary, we have shown that, by choosing

\mu 1 = \eta k and \mu 2 = \mu  - t\eta k

1 - t , we ensure \eta = \mu 1d(x; k) and \chi = \mu 2d(x; k) as required.
This completes our proof of Claim B.3. This result is a precursor to showing that the
translated set \=\scrE (x; k) \triangleq \{ z \in H : z = x+ \xi , \xi \in \scrE (x; k)\} is an edge \=\scrC (x).

Claim B.4. \=\scrE (x; k) is \=\scrC (x)-extreme.

Proof of Claim B.4. Consider any z1, z2 \in \=\scrC (x). That is, there are \xi 1, \xi 2 \in \scrC (x)
such that z1 = x+\xi 1 and z2 = x+\xi 2. Consider any 0 < t < 1 such that tz1+(1 - t)z2 \in 
\=\scrE (x; k). That is, there is some \xi 0 \in \scrE (x; k) such that tz1 + (1  - t)z2 = x + \xi 0. We
need to establish that z1, z2 \in \=\scrE (x; k). In other words, we need to establish that
\xi 1, \xi 2 \in \scrE (x; k). To see that this holds, note that tz1 + (1  - t)z2 = t(x + \xi 1) +
(1  - t)(x + \xi 2) = x + t\xi 1 + (1  - t)\xi 2. But since this must equal x + \xi 0, we have,
t\xi 1+(1 - t)\xi 2 = \xi 0. Since \scrE (x; k) is \scrC (x)-extreme, this implies that \xi 1, \xi 2 \in \scrE (x; k) as
required. This completes the proof of Claim B.4. Claim B.4 implies that \=\scrE (x; k)\cap \scrF is
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( \=\scrC (x)\cap \scrF )-extreme. Observe that the set \scrZ (x; k) = \=\scrE (x; k)\cap \scrF in view of Lemma 5.3.
Thus, since \scrF \subseteq \=\scrC (x) (as was observed before the statement of the result), \scrZ (x; k) is
\scrF -extreme using Lemma B.1(ii). It is straightforward to see that x+\lambda (x; k)d(x; k) is
an extreme point of the set \scrZ (x; k). Thus, by Lemma B.1(i), x+ \lambda (x; k)d(x; k) is an
extreme point of \scrF .
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